Reinforcement Learning Based on On-Line EM Algorithm
نویسندگان
چکیده
In this article, we propose a new reinforcement learning (RL) method based on an actor-critic architecture. The actor and the critic are approximated by Normalized Gaussian Networks (NGnet), which are networks of local linear regression units. The NGnet is trained by the on-line EM algorithm proposed in our previous paper. We apply our RL method to the task of swinging-up and stabilizing a single pendulum and the task of balancing a double pendulum near the upright position. The experimental results show that our RL method can be applied to optimal control problems having continuous state/action spaces and that the method achieves good control with a small number of trial-and-errors.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملApplication of reinforcement learning based on on-line EM algorithm to balancing of acrobot
متن کامل
Web pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کامل